
Cisco > Inside Cisco IOS Software Architecture > 5. Particle-Based Systems > Buffer Management Using
Particles

See All Titles

Buffer Management Using Particles

Particle buffering uses a scatter-gather approach for packet buffer memory management. Instead of
allocating one piece of contiguous memory for a buffer, particle buffering allocates dis-contiguous
(scattered) pieces of memory, called particles, and then links them together (gathers) to form one logical
packet buffer, called a particle buffer. With this scheme, a single packet can be spread across multiple
physical buffers.

Particle buffers are built—that is, individual particles are linked together—as each packet is received on an
interface, as you'll see when you study the Cisco 7200 router example. This method differs from that of
contiguous buffers, which need no assembly before use. As a result, there are no pools of pre-built particle
buffers like there are for contiguous buffers. After all, how would IOS know how many particles to add to
each buffer? Instead, IOS maintains pools of particles and draws from those pools to build packet buffers as
it receives packets. The particles are the basic building blocks and the pools provide the raw materials to
build the packet buffers.

Within a given pool, all particles are the same size; so any free particle in the pool can be used to build a
buffer without regard to the particle's size. This uniformity simplifies the particle management algorithms and
helps contribute to efficient memory use. IOS particle size varies from platform to platform, but within a
platform there is usually one primary size. There are exceptions—platforms can have pools with secondary
particle sizes as you'll see later in this chapter—but there is usually a primary particle size. The size is
chosen so it's large enough to contain the average packet while minimizing wasted memory, typically 512
bytes. This way, most packet buffers can be composed of just one particle.

To understand how the particle buffering scatter-gather approach works, consider the example illustrated in
Figure 5-1. In this simple example, there is one particle pool in memory and all packet buffers are built
from that pool.

Figure 5-1. Particle Example

< BACK Make Note | Bookmark CONTINUE >

Page 1 of 5

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=42

Assume that the pool's particle size is 512 bytes and three free particles, labeled P1, P2, and P3, exist in the
pool. Now, let's trace what happens when IOS receives a 1200-byte packet.

Step 1. IOS gets the next free particle (P1 in this example) and begins copying the packet data into the
particle. The first 512 bytes of the packet are copied.

Step 2. When the first particle is filled, IOS moves to the next free particle (P2 in this example), links it to P1,
and continues copying packet data into this second particle. The next 512 bytes of the packet are copied.

Step 3. When the second particle is filled, 176 bytes of packet data still are left. So, IOS moves to the next
free particle (P3 in this example), links it to P2, and copies the remaining 176 bytes into this third particle.

Upon completion, IOS has copied the entire 1200 bytes into three dis-contiguous pieces of memory that are
all logically part of a single packet buffer.

Particle buffers actually consist of more than just the memory that contains packet data. Some amount of
overhead is required (in the form of additional components) to maintain data about the packet as well as to
link the scattered memory pieces together. Figure 5-2 shows the components of a particle buffer and how
each one is related.

Figure 5-2. Particle Buffer Components

Each particle buffer consists of a packet header linked to one or more particles. A particle consists of a
particle header and an associated particle data block. The following list examines each of these components
in more detail:

Packet header—

The packet header is the same as the header for contiguous buffers. It contains information about the
type and the size of the packet in the buffer as well as pointers to specific fields in the packet. The

Page 2 of 5

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=42

packet header also contains a link to the first particle.

Particle header—

The particle header is a control block containing a link to the particle data block and a link to the next
particle in the buffer (if there is one). It also contains other information, such as the number of data
bytes in the data block and the pool that owns the particle.

Particle data block—

The particle data block is the piece of memory containing the actual particle data—basically, this is
just a buffer.

Particle Pools

IOS uses the same pool management strategy for particle pools as it does for contiguous packet buffers on
shared memory systems. IOS creates a private static particle pool for each interface, and then creates a
public dynamic pool, called the normal pool, that all interfaces and processes share. The private particle
pools use the public pool as a fall-back in case they run out of particles.

IOS also creates another public particle pool on most systems, called the fast switching pool, containing
small 128-byte particles. These particles are used when IOS needs to prepend data to a packet during fast
switching—for example, to rewrite a larger media header onto a packet. To prepend the data, IOS must
insert a new particle at the beginning of a particle buffer after it already has been linked together. Because
the prepended data is usually small, it uses the particles from this special pool.

The partial output from the show buffers command in Example 5-1 shows a sample of the public and
private particle pools IOS creates. The fast switching pool is labeled F/S.

Example 5-1. show buffers Command Output Displays Public and Private Particle Pools

Router-7200#show buffers …. Public particle pools: F/S buffers, 128 bytes (total 512, permanent 512): 0 in
free list (0 min, 512 max allowed) 512 hits, 0 misses 512 max cache size, 512 in cache Normal buffers, 512
bytes (total 1024, permanent 1024): 1024 in free list (512 min, 2048 max allowed) 0 hits, 0 misses, 0 trims, 0
created 0 failures (0 no memory) Private particle pools: FastEthernet0/0 buffers, 512 bytes (total 400,
permanent 400): 0 in free list (0 min, 400 max allowed) 400 hits, 0 fallbacks 400 max cache size, 271 in
cache Ethernet1/0 buffers, 512 bytes (total 128, permanent 128): 0 in free list (0 min, 128 max allowed) 128
hits, 0 fallbacks 128 max cache size, 64 in cache Ethernet1/1 buffers, 512 bytes (total 128, permanent 128):
0 in free list (0 min, 128 max allowed) 128 hits, 0 fallbacks 128 max cache size, 64 in cache …

Particle Coalescing

Although particle buffers do improve memory efficiency, they also tend to increase the complexity of the
programs that manipulate their contents. For example, with particles, packet fields can be split arbitrarily
across particle boundaries. Packet switching methods have to accommodate that possibility.

All fast switching methods, for most protocols, are equipped to handle particle buffers. However, this is not
the case for process switching. Because process switching adds little benefit, only complexity, Cisco
decided not to equip the process switching method for particle buffers. Process switching still requires a
packet to reside in a contiguous buffer. As a result, particle-buffered packets queued to process switching
must be transferred to a contiguous buffer through a process is called coalescing.

Coalescing essentially involves copying the contents of all the particles in a packet buffer, one by one, into
an appropriately sized contiguous buffer. Depending on the platform, this task either can be performed by
the main CPU or by a separate DMA engine. The coalescing process works as follows:

Step 1. IOS allocates an appropriately sized contiguous buffer from one of the system buffer pools. IOS
must find a buffer large enough for the entire packet or the coalescing process fails.

Page 3 of 5

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=42

Step 2. IOS copies the data from each packet buffer particle into the new contiguous buffer.

Step 3. IOS frees all the particles, returning them to their original pool.

Step 4. Finally, IOS unlinks the packet header from the freed particles and links it to the new contiguous
buffer.

When the process is complete, the resulting packet looks the same as the original (same packet header)
except it resides in a physically contiguous block of memory.

To understand how particle buffers are used in IOS, it's helpful to look at an implementation example. The
following sections describe how particle buffers are used on the Cisco 7200 router series, the first platform
to support particles.

Last updated on 12/5/2001
Inside Cisco IOS Software Architecture, © 2002 Cisco Press

< BACK Make Note | Bookmark CONTINUE >

Index terms contained in this section

buffers
 particle buffering 2nd
 coalescing
 data blocks
 headers
 pools
coalescing, particle
commands
 show buffers
data blocks
 particle buffering
fast switching pools
 particle buffers
headers
 particle buffering
memory
 particle data blocks
memory pools
 particle buffering 2nd
normal pools
 particle buffers
packet buffer header
 particle buffering
packet buffering
 particle buffering 2nd
 coalescing
 data blocks
 headers
 pools
particle buffering 2nd
 coalescing

Page 4 of 5

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=42

 data blocks
 headers
 pools
particle data blocks
particle header
particles
pools
 particle buffering 2nd
private particle pools
process switching
 particle buffers
public dynamic pools
 particle buffers
show buffers command
switching, process
 particle buffers

About Us | Advertise On InformIT | Contact Us | Legal Notice | Privacy Policy
© 2001 Pearson Education, Inc. InformIT Division. All rights reserved. 201 West 103rd Street, Indianapolis, IN 46290

Page 5 of 5

12.04.2002http://safari.informit.com/framude.asp?bookname=1578701813&snode=42

